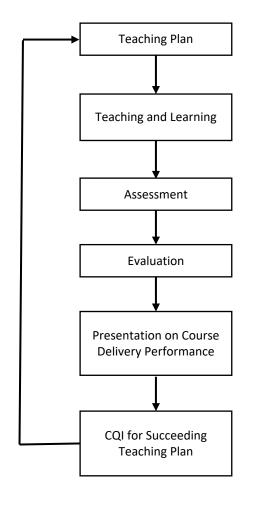


FAKULTI KEJURUTERAAN PEMBUATAN

PENYEDIAAN ITEM PENTAKSIRAN

11 APRIL 2022

ZAMBERI JAMALUDIN
FAKULTI KEJURUTERAAN PEMBUATAN



Outlines

- ASSESSMENT
- VETTING

Outcome Based Education (OBE)

Presentation of draft Teaching Plan to TDA, KJ, and Program Coordinator.

With students' evaluation on week 13-15.

In accordance to the assessment strategies outlined in the Teaching Plan as recorded in the OBE system.

Analysis on CLO and subsequently PLO achievement.

Presentation by Course Coordinators to the faculty on achievement of CLO,PLO and proposed CQI actions. Discussion on issues (if any) on effective course delivery.

Proposed CQIs are recorded and become reference for the upcoming course delivery.

ASSESSMENT

- Asking questions is a basic way to gather information.
- A way to engage "people" in a "conversation".
- In education, asking questions are tool in the assessment of students' knowledge on specific topics and subjects.
- Asking the right questions, in the right manner would ensure that accurate and reliable analyses and conclusions could be extracted from the students based on answers given.

- Responsibility of all lecturers to ensure that measurements of Course Learning Outcomes (CLO) are:
 - reliable
 - accurate
 - relevant

• Covid-19 has certainly leaves a great impact on the way that we conduct our assessments.

Online mode of assessment - integrity

Motivations (Why?)

• All institutions offering engineering programs are faced with significant challenges, especially in preparing students so that they can receive information, learn the technology, the principles and practice of engineering as well as adapting to the rapidly changing needs to compete globally. Criteria and targets set by the Engineering Accreditation Council (EAC) and the Malaysian Qualifications Agency (MQA) stipulate that these students must be able to process the information actively and critically, evaluate them in order to achieve the high level of professional skills. Apart from the use of teaching and learning strategies, assessment methods, such as open-ended questions from the higher level of Bloom's taxonomy can be used to develop the necessary professional skills.

"How to Construct Open Ended Questions", Procedia - Social and Behavioral Sciences 60 (2012) 456 – 462 Hafizah Husain, Badariah Baisb, Aini Hussainb, Salina Abdul Samad

Engineering Accreditation Council Engineering Technology Accreditation Council BOARD OF ENGINEERS MALAYSIA

GUIDELINES NO. 005

GUIDING PRINCIPLES ON TEACHING-LEARNING AND ASSESSMENT IMPLEMENTATION DURING COVID-19 PANDEMIC

- 2.1 All programmes are to ensure the attainment of the 12 Programme Outcomes (POs) as stipulated in the Standards. All alternative assessments must be designed or formulated based on the intended learning outcomes. Scenario or case study types of questions could be used as an alternative to the Psychomotor and Affective POs during the COVID-19 pandemic.
- 2.2 All programmes are expected to implement substantial equivalent assessments to the pre-pandemic assessments. Continuous assessments implemented could be continued with take-home exams and assignments. The programme is expected to undertake precautionary measures in handling integrity issues.

The teaching-learning and assessment methods shall be appropriate to, consistent with, and support the attainment or achievement of the POs.

For online examination, extra time may be allocated to students to account for the possible unfamiliarity use of the TLA platform or time spent to download and upload assessment documents.

 Continuous assessments may include case study, project-based learning and problem-based learning. Assessments include high taxonomy levels questions where answers are not obtainable directly from textbooks or readily available from the internet to address the characteristics of complex/broadly defined/well defined engineering problems.

So the questions are...

What's best to measure these CLOs?

How do we design the assessments?

MANUFACTURING PROCESSES (DMFM 1323)

Course Learning Outcome

- 1 Describe the basic principles and operation of common processes in manufacturing.
- 2 Explain the appropriate machine tool and its ability in producing required part.
- (3) Apply the principles of machining and manufacturing process in developing a part using learnt processes.
- 4 Produce a project with engineering values based on the skills acquired.

ENGINEERING MATERIALS (DMFM 1253)

Course Learning Outcome

- Describe the fundamental principles of engineering materials in terms of its structure.
- ② Explain the engineering materials properties based on its structure towards specific performance.
- (3) Choose suitable processing methods according to their engineering materials structure and properties towards specific performance.

ENGINEERING LABORATORY 3 (BMFP 3111)

Course Learning Outcome

- Model, simulate and analyze manufacturing systems by using state of the art discrete event simulation software.
- 2 Perform computer-based simulations and technical report writing on human factors engineering/ ergonomics related to manufacturing industry environment.
- Work cooperatively with group members, developing teamwork in the assigned activity.

CNC MACHINING (BMFS 4613)

Course Learning Outcome

- Explain the principle of CNC systems, mechanics and dynamics of machine tool.
- 2 Analyze CAD/CAM methodology in 2D, 3D, surface modeling and CAM operation.
- (3) Describe recognizable basic features of Computer Numerical Control (CNC) and CNC Programming.
- Plan and analyze process planning for part machining.

Closed Ended

- Closed-ended questions are questions that can only be **answered by selecting from a limited number of options**, usually multiple-choice, 'yes' or 'no', or a rating scale (e.g. from strongly agree to strongly disagree, "Are you satisfied with this product?" → Yes/No/Mostly/Not quite).
- They are used to obtain facts and specific pieces of information.
- They do not invite or encourage people to elaborate.

- Standardize responses. Memory-based responses.
- In carefully-written closed questions, the question and responses mean the same thing to nearly all respondents.
- Faster to administer.
- Easier and faster to mark.

Avoid questions that have the following characteristics:

- answers that provide facts
- easy to answer questions
- answers that can be given quickly and require little to no thought.

Open Ended

- Open-ended questions are questions that cannot be answered with a simple 'yes' or 'no', and instead require the respondent to elaborate on their points.
- Open-ended questions start with "why?," "how?," and "what if?"
- They require a person to pause, think, and reflect.
- Answers, typically, will not be facts, but personal feelings, opinions, or ideas about a subject
- Open-ended questions are broad and can be answered in detail (e.g. "What do you think about this product?"),

- An open-ended question is designed to encourage a full, meaningful and deliberate answer using the subject's own knowledge and/or feelings.
- Ask open-ended questions when you want detailed explanations.
- Open questions enable respondents to answer as they wish.

Features of Open-Ended Questions

Cooney et al (2004) stipulates that open-ended questions should exhibit the following features:

- 1. It involves a **significant concept** in a related field. Give students the chance to display their understanding by linking the entire topic and how it can lead to real world problem solving.
- 2. There could be **multiple answers** to open-ended questions. When a question requires one correct answer, students often conclude there is only one way to solve the problem. Questions that require students to explain their thinking will encourage a variety of responses or reactions because not all students think the same.

4. Need to **communicate the reasoning** process. One strong point of using openended questions is that students are given the opportunity to communicate what is in their minds.

5. The question should cause students to think deeper and connect the current question to other ideas previously learned

- 6. What makes a question "great"?
 - Require more than remembering a fact or reproducing a skill.
 - Students can learn by answering the question, and/or the teacher can learn about the students from how they answer.
 - There are several acceptable solutions (or even answers).
- 7. Open-ended questions should be **clearly stated**.

 These types of questions should have a clear purpose even if there are many different answers. In addition, students need to know what is expected of them and what lecturers consider as a good and complete response.

Simple examples...

 Why do
 ? Explain your answer. What are some possible explanations as to why_____? Would other ______ be affected by ______? Why or why not? How does _____? Support your answer (with information from reading, from the chart etc.). Tell what _____did wrong. How would you design a better way? Explain how you arrived at your answer using pictures, words, equations. (Math) Predict and describe ______. Support and defend your answer. Discuss the likelihood that ______ From the information on chart, what is true of

ffy □ D MyUTeM

 Suppose you want to you chose (included) each. 	Make a	and	Tell why
 If you had to, which answer. 	W	vould you sugges	t. Explain your
Make a graph showing	(Math)		
 Would you rather have 	or	? Tell why.	(Math)
 What could be done about 	? Give	e reasons for you	r answer
 Compare the Te which would be least lile 			e most likely and

Challenges

- Understanding of open-ended questions
- Limitations on existing Course Learning Outcomes that are of low level Bloom Taxonomy
- Greater effort of constructing open-ended questions
- Lengthier time for markings
- Students limited understanding on requirements of open-ended questions

- Fulfilling University
 - ISO
 - Academic rules and regulations

Our Promise

Teaching Plan FACULTY OF MANUFACTURING ENGINEERING

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CONTROL SYSTEM

BMFA 3313 SEMESTER 2 SESI 2020/2021

1.0 CQI actions to be undertaken this semester

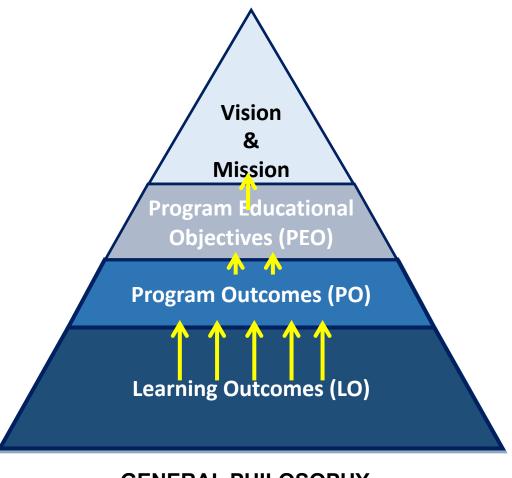
More exposure to understanding and techniques to solve problems through tutorial and in-class exercises have been done. Moreover, additional problems on controller design are introduced through design based laboratory exercises.

2.0 Learning Outcomes

At the end of this course, students should be able to:

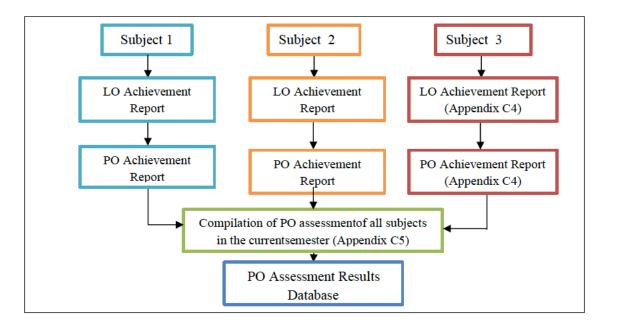
- LO1 Construct mathematical model of dynamic systems.
- LO2 Analyze transient response, steady-state error and stability of first-order and second-
- LO3 Design controllers for complex engineering problems.
- LO4 Construct and numerically validate a control system using numerical software such as Matlab / Simulink

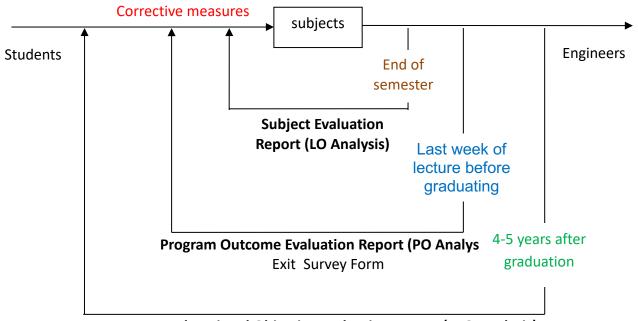
.O PO	Taxonomy Blooms	СЕРА	Assessment Details Methods			
01 1	C3	WK3	UG	UG (Q1 & Q2) – Assess student's ability to represent a system in transfer function and block diagram.		
				UG (Q2) – Assess student's ability to construct		
				mathematical model.		
02 2	C4	WK3	PA	PA (Q1) – Assess student's ability to analyze transient		
				response and stability of system.		
				PA (Q2) – Assess students' ability to analyze stability and		
				steady state error of a system.		
03 3	C6	WK3,	TG1	TG1 – Assess students' ability to construct a control system.		
		WP1,	PA	PA (Q3) – Assess students' ability to design a controller		
		EA1		using root locus.		
				PA (Q4) - Assess students' ability to design a controller		
				using frequency response method.		
04 5	C6	WK3,	LR1	LR1, LR2 & LR3 - Assess student's ability to construct and		
		WP1,	LR2	numerically validate a control system.		
		EA1	LR3	·		
		WP1, EA1	PA LR1 LR2	steady state error of a system. TG1 – Assess students' ability to construct a con PA (Q3) – Assess students' ability to design a using root locus. PA (Q4) – Assess students' ability to design a using frequency response method. LR1, LR2 & LR3 – Assess student's ability to co		


^{*}TG - Assignment, LR - Laboratory, UG - Test, PA - Final examination

3.0 Synopsis

- Accreditation Requirement
 - Alignment of Assessment to CLO
 - Fulfilment of Taxonomy requirements
 - Quality Management System


GENERAL PHILOSOPHY


Yr	No ·	Code	Subject				Matri	ksKı	ırsus	Law	an P	O Fa	kulti		
				1	2	3	4	5	6	7	8	9	10	11	12
	1	BLHL ***2	Third Language									x			
	2	BLHW 2712	Ethnic Relation		x							x	x		
	3	BMFM 1213	Engineering Mathematics	x											
	4	BMFG 1823	Statics and Strength of Materials	x	x										
	5	BENG 1113	Electric and Electronics Principles	x		x						x			
1	6	BITG 1113	Computer Programming	X	X			X							

Subject	Learning		Program Outcomes										
Subject	Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
	LO 1		Х										
Lean Six	LO 2					X							
Sigma	LO 3				Х								
	LO 4			X									

Program Educational Objective Evaluation Report (PEO Analysis)

- PEO Survey Form

COMMON ISSUES IN VETTING

- Wrongful focus
- Inappropriate choice of Taxonomy verbs not reflecting CLO
- Misguided questions
- Mismatch between mark allocation and answer schemes.
- Time allocations appropriateness
 - 3 hours FE ~ 9-11 hours SLT Continuous Assessment 2 hours FE ~ 6-8 hours SLT Continuous Assessment 1 hour FE ~ 3-5 hours SLT Continuous Assessment

Alignment of Assessments to CLO

2.0 Learning Outcomes

At the end of this course, students should be able to:

- LO1 Construct mathematical model of dynamic systems.
- **LO2 Analyze** transient response, steady-state error and stability of first-order and second-order systems.
- LO3 Design controllers for complex engineering problems.
- LO4 Construct and numerically validate a control system using numerical software such as Matlab / Simulink

LO	PO	Taxonomy Blooms	СЕРА	Assessment Methods	Assessment Details
LO1	1	C3	WK3	UG	UG (Q1 & Q2) – Assess student's ability to represent a system in transfer function and block diagram. UG (Q2) – Assess student's ability to construct mathematical model.
LO2	2	C4	WK3	PA	PA (Q1) – Assess student's ability to analyze transient response and stability of system. PA (Q2) – Assess students' ability to analyze stability and steady state error of a system.
LO3	3	C6	WK3, WP1, EA1	TG1 PA	TG1 – Assess students' ability to construct a control system. PA (Q3) – Assess students' ability to design a controller using root locus. PA (Q4) – Assess students' ability to design a controller using frequency response method.
LO4	5	C6	WK3, WP1, EA1	LR1 LR2 LR3	LR1, LR2 & LR3 — Assess student's ability to construct and numerically validate a control system.

Fulfilment of Taxonomy requirements

Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka

TEST BLUEPRINT

CLO, LEVEL OF BLOOM TAXONOMY AND CEPA (WA/DA) TO FINAL EXAMINATION OUESTIONS

		I II IAL LA	AMENATION QUESTIONS
Subject Code	BMFS2613	Session	2020/21
Subject Name	Manufacturing process	Semester	
Prepared by			

Outsetion Number	CLO	BLOOM TAXONOMY (COGNITIVE)	Washington	Accord (WA)	Dublin Accord (DA)		
Question Number	CLO	BLOOM TAXONOMI (COGNITVE)	WP	WK	DK	DP	
Question 1	1	C1		WK3			
Question 2	2	C3	WP4	WK8			
Question 3	2	C3	WP4	WK8			
Question 4	3	C3	WP2				

WA = Degree programme (WP/WK) DA = Diploma programme (DK/DP)

Course Learning Outcomes:

CLO1 - Describe characteristics of manufacturing processes applied in the industry.

CLO2 - Analyze the capability of various manufacturing processes in product development.

CLO3 – Select the most appropriate manufacturing process for a given product design.

Fulfilment of Taxonomy requirements

Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka

LEVEL OF BLOOM TAXONOMY TO FINAL EXAMINATION QUESTIONS

Subject Code	BMFA 3313	Session	2017/2018
Subject Name	CONTROL SYSTEM	Semester	1
Prepared by	ZAMBERI BIN JAMALUDIN		

			LEVEL OF B	LOOM TAXONO	MY		
Question Number	Level 1 Knowledge	Level 2 Comprehension	Level 3 Applications	Level 4 Analysis	Level 5 Synthesis	Level 6 Evaluation	Total
Question 1			a-i(5), b.c.(5)	a- <u>ii.jii(</u> 5)			15
Question 2			a(4)	b(11)			15
Question 3					(15)		15
Question 4					(15)		15
Question 5					(15)		
Total (%)			14(19%)	16 (21%)	45 (60%)		75

Note

SA - Short answer question (Marks) [Type of Question]

Learning Outcomes:

- Construct nathematical model of dynamic systems.
- ii. Analyze transient response, stability and steady-state error of first-order and second-order systems
- iii. Design controllers for complex engineering problems.
- iv. Construct and numerically validate a control system using numerical software such as Matlab/Simulink.

ENGINEERING PROGRAMME ACCREDITATION STANDARD

2020

(v) Describe how the requirements of Complex Problem Solving (CPS) and Complex Engineering Activities (CEA) have been addressed.

The range of complex problem solving is defined as follows:

No.	Attribute	Complex problems have characteristic WP1 and some or all of WP2 to WP7:
WP1	Depth of Knowledge Required	Cannot be resolved without in-depth engineering knowledge at the level of one or more of WK3, WK4, WK5, WK6 or WK8 which allows a fundamental-based, first principles analytical approach.
WP2	Range of conflicting requirements	Involve wide-ranging or conflicting technical, engineering and other issues.
WP3	Depth of analysis required	Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models.
WP4	Familiarity of issues	Involve infrequently encountered issues.

WP5	Extent of applicable codes	Are outside problems encompassed by standards and codes of practice for professional engineering.
WP6	Extent of stakeholder involvement and level of conflicting requirements	Involve diverse groups of stakeholders with widely varying needs.
WP7	Interdependence	Are high level problems including many component parts or subproblems.

ENGINEERING PROGRAMME ACCREDITATION STANDARD

2020

(v) Describe how the requirements of Complex Problem Solving (CPS) and Complex Engineering Activities (CEA) have been addressed.

The range of complex engineering activities is defined as follows:

No.	Attribute	Complex activities mean (engineering) activities or projects that have some or all of the following characteristics:
EA1	Range of resources	Involve the use of diverse resources (and for this purpose resources includes people, money, equipment, materials, information and technologies).
EA2	Level of interactions	Require resolution of significant problems arising from interactions between wide ranging or conflicting technical, engineering or other issues.
EA3	Innovation	Involve creative use of engineering principles and research-based knowledge in novel
EA4	Consequences to society and the environment	Have significant consequences in a range of contexts, characterised by difficulty of prediction and mitigation.
EA5	Familiarity	Can extend beyond previous experiences by applying principles-based approaches.

ENGINEERING TECHNOLOGY PROGRAMME ACCREDITATION STANDARD

2020

(a) Definition of Broadly-Defined Problem Solving

No.	Attribute	Broadly-defined Engineering Problems have characteristic SP1 and some or all of SP2 to SP7:
1	Depth of Knowledge Required	SP1: Cannot be resolved without engineering knowledge at the level of one or more of SK 4, SK5, and SK6 supported by SK3 with a strong emphasis on the application of developed technology
2	Range of conflicting requirements	SP2: Involve a variety of factors which may impose conflicting constraints
3	Depth of analysis required	SP3: Can be solved by application of well-proven analysis techniques
4	Familiarity of issues	SP4: Belong to families of familiar problems which are solved in well-accepted ways
5	Extent of applicable codes	SP5: May be partially outside those encompassed by standards or codes of practice
6	Extent of stakeholder involvement and level of conflicting requirements	SP6: Involve several groups of stakeholders with differing and occasionally conflicting needs
7	Interdependence	SP7: Are parts of, or systems within complex engineering problems

(b) Range of Engineering Activities

No.	Attribute	Broadly-defined activities			
	Preamble	Broadly-defined activities means (engineering) activities or projects that have some or all of the following characteristics:			
1	Range of resources	TA1: Involve a variety of resources (and for this purposes resources includes people, money, equipment, materials, information and technologies)			
2	Level of interactions	TA2: Require resolution of occasional interactions between technical, engineering and other issues, of which few are conflicting			
3	Innovation	TA3: Involve the use of new materials, techniques or processes in non-standard ways			
4	Consequences to society and the environment	TA4: Have reasonably predictable consequences that are most important locally, but may extend more widely			
5	Familiarity	TA5: Require a knowledge of normal operating procedures and processes			

THE VETTING PROCESS..

- Vetting Committee
- Vetting form:
 - CLO mapping
 - Level of difficulty
 - Marks allocation, Time Allocation
 - Clarity of Questions
 - Answer scheme

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FACULTY OF MANUFACTURING ENGINEERING

PEER VETTING FORM FINAL EXAMINATION

Subject Code : BMFS 2613

Subject Name : MANUFACTURING PROCESS

Session/Semester : 2021/2022-1

Vetter : PM DR SHUKOR

A. Course Learning Outcomes: (section A & B are to be filled by Course Coordinator)

CLO1 - Describe characteristics of manufacturing processes applied in the industry.

CLO2 - Analyze the capability of various manufacturing processes in product development.

CLO3 – Select the most appropriate manufacturing process for a given product design.

B. Mapping and Marks Allocation to Course Learning Outcomes

Questions No.	CLO 1	CLO 2	CLO 3	Recycle No. (Yes)	Recycle track (Latest)
Q1	25				
Q2		25			
Q3		25			
Q4			25		

Kindly rate (√) each question based on the following criteria.

1. Not Appropriate 2. Somewhat Appropriate 3. Appropriate 4. Very Appropriate

QUI	QUESTION 1		2	3	4	Additional Remarks
i.	Relevance to CLO, Bloom's Taxonomy and WA/DA			٧		Please refer to the comments in the question
ii.	Level of difficulty (WA/DA)			٧		paper.
iii.	Allocation of time.			٧		
iv.	Allocation of marks.			٧		
v.	Format and clarity of language.			٧		

FKP-Faculty vetting Feb2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FACULTY OF MANUFACTURING ENGINEERING

FACULTY VETTING FORM FINAL EXAMINATION QUESTIONS

Course Code: BMFS2613

Course Name: Manufacturing Process Session/Semester: 1 - 2021/2022

Vetter: FKP Management Team & Members of Curriculum, Syllabus and OBE/External Examiner

OVERALL COMMENT

1- Quality of work:

1-	Quality of work.			
	Items	Proficiency	Format	
	Cover page	1 2 3 4 5	1 2 3 4 5	2 sets of questions
	Q1	1 2 3 4 5	1 2 3 4 5	Front pogo:
	Q2	1 2 3 4 5	1 2 3 4 5	Front page: Use updated front page
	Q3	1 2 3 4 5	1 2 3 4 5	
	Q4	1 2 3 4 5	1 2 3 (4) 5	

Notes:

1 - Worst 2- Poor 3- Fine 4- Good 5- Excellent

2- Contents

Q1 Explain THREE (3) general precautions.. remove "general" word

BM versio

manik kimpalan --> kumai kimpalan

Cadangkan DUA (2) teknik ujian tanpa musnah

All questions are well prepared and follow the CEPA standard.

Signature of Vetter :

(Dean/Deputy Dean(Academic)/Members of FKP Curriculum, Syllabus & OBE)

Stamp: DR. MOHD SANUSI BIN ABDUL AZIZ
Date: 21 - 12 - 2021 Penyeleras BMFG

Signature of Subject's Coordinator:

(acknowledgement of corrections)

Stamp : Date :

Signature of Head of Department:

Stamp : Date : UTEM

LINUTERITI TEKNIKAL MALAYSIA MELAKA

LINUTERITI TEKNIKAL MALAYSIA MELAKA

FKP-Faculty vetting Feb2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FACULTY OF MANUFACTURING ENGINEERING

FACULTY VETTING FORM FINAL EXAMINATION QUESTIONS

Course Code: BMFR3313

Course Name: Mechanic of Machine Session/Semester: 1 - 2021/2022

Vetter: FKP Management Team & Members of Curriculum, Syllabus and OBE/External Examiner

OVERALL COMMENT

1- Quality of work:

Items	Proficiency	Format			
Cover page	1 2 3 4 5	1 2 3 4 5			
Q1	1 2 3 4 5	1 2 3 4 5			
Q2	1 2 3 4 5	1 2 3 4 5			
Q3	1 2 3 4 5	1 2 3 4 5			
Q4	1 2 3 4 5	1 2 3 4 5			

Notes:

age

1 - Worst 2- Poor 3- Fine 4- Good 5- Excellent

2- Contents

Q1 (a) Predict with explanation...

Set 2

(b) standardize the unit used in sentence; meter --> m

Q3 (a) add unit in Figure 1

Q3 (b) Find --> Compute 30 per cent --> 30%

(c) add [Note: Use your own word...] at a new line

Q4 Write marks at new line (not in the same line with question)

All questions are well prepared and follow CEPA standard

Signature of Vetter :

(Dean/Deputy Dean(Academic)/Members of FKP Curriculum, Syllabus & OBE)

Stamp: DR. MOHD SANÚSI BIN ABDUL AZIZ

Date: 21 - 12 - 2021 Penyelaras BMFG
Fakoriti Keigrupeaan Pembuatan

Pakelti Kejuruteraan-Pembuatan

Signature of Subject's Coordinator:
(acknowledgement of corrections)

Migens Xbff-

ASSOC, PROF. DR. MID RIZAM BW ARD RAHMAN

Feesity of Manufacturing Engineering University Teknikal Molaysia Melaka Hang Tush Jaya 76100 Qurjan Turqqal, Melaka

Signature of Head of Department :

Stamp:
Date:

Stamp:

Date : 27/12/2021

(endorsement)

(a) A shaft with a 20 mm diameter and a length of 0.6 meter has a rotor with x kg mass at its center and is freely supported on both ends with bearings. The mass of the shaft is negligible and its stiffness is k. During its operation, the shaft will rotate with the attached rotor at the center.

Predict and explain what would happen to the shaft and rotor system if the shaft spins at the angular velocity of $(k/x)^{1/2}$.

(10 marks)

Answer:

The critical angular velocity of the simply supported beam system in rotation is (k/x)1/2 (2 marks)

If the shaft rotates at the critical angular velocity then, (w=wn) (2 marks)

We know that circular frequency,

$$\omega_n = \sqrt{\frac{s}{m}}$$
 or $y = \frac{\omega^2 \cdot e}{(\omega_n)^2 - \omega^2}$ (2 marks)

The deflection, y, will go to infinity due to resonance.(2)

The system will fail. (2 marks)

(b) A vertical double acting steam engine develops 75 kW at 250 rpm. The maximum fluctuation of energy is 30 per cent of the work done per stroke. The maximum and minimum speeds are not to vary more than 1 per cent on either side of the mean speed. Find the mass of the flywheel required, if the radius of gyration is 0.6 m. (5 marks) $\omega = 2\pi N/60 = 2\pi \times 250/60 = 26.18 \text{ mJ/s}$ $C = \frac{\omega_1 - \omega_2}{\omega} = 0.02 - 1$ work per cycle = P x 60/N = 75 × 103 × 60/25 0 = 18×103 N-m - () AF = work x Cx 5.4 x103 = m.k2. W2. (s = mx (0.6)2 x (26.18)2x 0.02 = 4.93 m M = 5.4 x 103 = 1095 kg. # -- 1

SULIT

UNIVERSITI TEKNIKAL MALAYSIA MELAKA PEPERIKSAAN AKHIR SEMESTER I

FINAL EXAMINATION SEMESTER I SESI 2019/2020 SESSION 2019/2020

FAKULTI KEJURUTERAAN PEMBUATAN

KOD KURSUS COURSE CODE

KURSUS : SISTEM KAWALAN
COURSE : CONTROL SYSTEMS

PENYELARAS

COORDINATOR

PROGRAM : BMFG

PROGRAMME

MASA : 9.00 PAGI – 12.00 TENGAH HARI

TIME : 9.00 AM - 12.00 PM

 TEMPOH
 : 3 JAM

 DURATION
 : 3 HOURS

 TARIKH
 : 2019

 DATE
 : 2019

TEMPAT : DEWAN CANSELOR

VENUE

ARAHAN KEPADA CALON INSTRUCTIONS TO CANDIDATES

- Kertas soalan ini mengandungi EMPAT (4) soalan This question paper consists of FOUR (4) questions.
- Jawab SEMUA soalan. Answer ALL questions.
- Setiap soalan hendaklah dijawab pada muka surat yang baru.
 Use a new page for every question answered.
- Penyelewengan akademik boleh dikenakan tindakan tatatertib di bawah Kaedah Universiti Teknikal Malaysia Melaka (Tatatertib Pelajar) 2009. Academic dishonesty would result in disciplinary action to be taken under Universiti Teknikal Malaysia Melaka (Student Disciplinary) 2009.

KERTAS SOALAN INI TERDIRI DARIPADA (14) MUKA SURAT SAHAJA THIS QUESTION PAPER CONTAINS (14) PAGES

CONTROL SYSTEMS (BMFA 3313)

Course Learning Outcome

- Construct mathematical model of dynamic systems.
- 2 Analyze transient response, steady-state error and stability of first-order and second-order systems.
- 3 Design controllers for complex engineering problems.
- 4 Construct and numerically validate a control system using numerical software such as Matlab / Simulink.

- (b) A unity feedback system is to be designed to meet the following requirements:
 - · Specification 1: Forward transfer function

$$G(s) = \frac{K(s+\lambda)}{s(s+\delta)}$$

- Specification 2: Steady-state position error for a unit ramp input = $\frac{1}{5}$
- Specification 3 : The closed-loop poles locations at $-1 \pm j1$

Determine K, λ , and δ to meet the requirements.

(8 marks)

(b) Figure 2 shows a block diagram with a transfer function, G(s) as follows:

$$G(s) = \frac{K}{s(s+7)(s+11)}$$

Evaluate the range of gain, K for the system to be stable, unstable and marginally stable.

(6 marks)

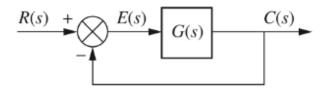


Figure 2: Block diagram of a feedback control system

- Q4 Figure 5 shows block diagram of a control system. It represents position control of a CNC milling machine positioning table. A position controller, $G_c(s)$ is to be design fulfilling the following performance criteria:
 - i. A percentage overshoot of just 5% for a step input.
 - ii. An improvement of 50% from the current system settling time.

In complex plane, the dominant second order pair of poles for the uncompensated system is located at -3.35 + 3.51j while in frequency domain, the static error constant must equals 40 to meet the steady-state error requirement.

(a) Solve for the gain K that would meet the respective system requirement.

(4 marks)

- (b) Design a position controller, G_c(s) that meets the system response requirements using either a Root Locus method or a Frequency Response method.
 [Note: The open loop Bode diagram of the system is shown in Figure 6]
 (12 marks)
- (c) Predict the step responses of the compensated system.

 [Note: Compare with step response of the uncompensated system]

 (4 marks)

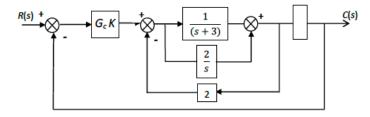


Figure 5: Block diagram of a control system with gain K

CONTROL SYSTEMS (BMFA 3313)

Course Learning Outcome

- 1 Construct mathematical model of dynamic systems.
- 2 Analyze transient response, steady-state error and stability of first-order and second-order systems.
- 3 Design controllers for complex engineering problems.
- Construct and numerically validate a control system using numerical software such as Matlab / Simulink.

(b) Figure 2 shows a three degree of freedom positioning robot. A frame is to be located as follows:

$$\begin{bmatrix} 0.527 & -0.574 & 0.628 & a \\ 0.369 & 0.819 & 0.439 & b \\ -0.766 & 0 & 0.643 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Solve for the robot joints parameters including the RPY values.

[Note: Please refer to Appendix 1 for the parameter values a, b, c]

(10 marks)

Course Learning Outcome

- Explain the components of robots, their structures and applications in manufacturing industry.
- ② Explain the role of forward and inverse kinematics in robot arms.
- (3) Analyze the planned trajectory of a robot arm in a production cell.
- Devise the motion controls of a robot arm in a production

Matrix No.	$\mathbf{L}_{\mathbf{l}}$	L_2	L_3	L_4	L_5	a	b	c
B051710119	1	1	1	1	2	23	24	1
B051810031	2	2	2	2	3	22	23	2
B051810002	3	3	3	3	4	21	22	3
B051910091	4	4	4	4	5	20	21	4
B051710206	5	5	5	5	6	19	20	5
B051810053	6	6	6	6	7	18	19	6
B051810061	7	7	7	7	8	17	18	7

- Q2 Figure 3 shows an illustration of a 6-degree-of-freedom industrial robot for manufacturing application.
 - (a) Assign the coordinate systems to each of the robot joints based on Denavit-Hartenberg method.

(6 marks)

(b) Construct the D-H parameters table for this industrial robot.
[Note: Assign appropriate dimensions for each of the link]

(12 marks)

(c) Solve for the transformation matrix between joint 1 and joint 4 at the instant shown in Table 1:

(7 marks)

Table 1: Joint parameters at a particular instant

Joint / Angle	1	2	3	4	5	6
Θ_{i}	10°	15°	10°	5°	20°	10°

Figure 3: An illustration of an industrial robot

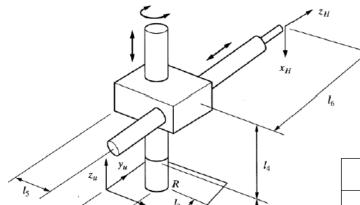


Figure 2: A robot schematic diagram

Q1 (a) Given the rotational mechanical system of Figure 1, where damper, D = 1 and T(t) is a unit step.

Calculate the values of J and K to yield a response of 30% overshoot and a settling time of 4 seconds.

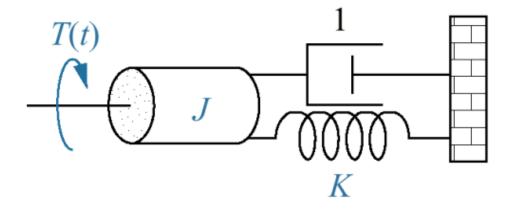


Figure 1: Rotational mechanical system.

A material is needed for the construction of a robotic arm for industrial application. The material to be chosen is the one that shows the smallest amount of elastic deformation.

i. Suggest TWO (2) mechanical properties that must have for the chosen materials.

(2 marks)

ii. Justify your answer in (i).

(4 marks)

Bicycle (bike) come in many forms, each aimed at a particular sector of the market. Consider a design of sprint bikes and a Children's bikes.

i. Identify TWO (2) constraints that must be met for each of the bicycle frame.

(2 marks)

ii. Justify each of the identified constraints in (i).

(4 marks)

iii. Suggest the primary objective of the sprint bikes frame and the children's bike frame.

(2 marks)

iv. Justify your answer in (iii).

(4 marks)

The world today is continuously striving towards carbon neutral clean energy technology. Hence, renewable energy sources like wind power system is increasingly receiving the attention of mankind. Your company is planning to produce a wind turbine electricity generators blades. The blade size should be of 20 to 60 m in length, with complex aerofoil contours, minimum weight, very low maintenance, operated outdoor (expose to sun, rain, hail, storms, heat, cold dust, impact) with expected life time of more than 20 years.

i. Propose the most suitable material for the wind turbine blade.

[Note: Show the materials index performance and design requirement in your

answer. Your evaluated candidates should include at least three materials.

Appendix I is provided as guidance only, but not limited to.]

(12 marks)

ii. Describe type of construction that you will adopt to produce the blades.

(7 marks)

iii. Sketch the blades design that you will use in (ii).

(4 marks)

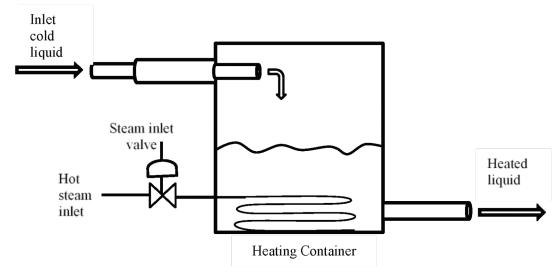


Figure 1 shows an example of a heating process control applied in the industry. The inlet cold liquid stream is to be heated to certain temperature before discharges to the next process. A hot steam inlet provides the heating required.

Suggest improvements to the system that would convert the current heating process into closed loop control system.

Note:

- Construct the open loop block diagram.
- Construct the closed loop block diagram of the upgraded system
- Re-sketch the figure and highlight additional elements added.

Go through your utility bills.

Determine how much money you spent for your refrigerator.

Explain your answer by providing the information below.

- i. Details of the Tenaga Nasional Berhad (TNB) utility bills (attach figure)
- Specification of the refrigerator and refrigerant (attach figure)
- iii. Calculation of the average usage for refrigerator in kWh per day
- iv. Calculation of the heat transfer out by the refrigerator in kJ per day
- v. Calculation of the energy consumptions by the refrigerator per month
- vi. Calculation of amount to be paid for refrigerator per month

(45 marks)

Determine how much your latest bill would be if you had the most efficient refrigeration system installed.

(note: attach the figure and specification of recommended refrigerator)

ffy⊚o MyUTeM

- ✓ Pick and application in Manufacturing whereby a specific task (pick-and-place, assembly, polishing, welding etc.) is being handled by a robotic system.
- ✓ Select the best robot configuration (Cartesian, Cylindrical, Spherical, Articulate) for the task selected.
- ✓ Select from literature (not textbook), an industrial-apply robot manipulator suitable for the task and configuration selected.
- ✓ Construct the D-H representative for the robot manipulator selected (indicate/assign all dimensions as necessary with proper labeling).
- ✓ Perform D-H analysis by constructing the DH Parameter Table.
- ✓ Solve for the overall transformation matrix of the robot structure (use any available numerical software to assist you) by assigning numerical values to all respective angles.

- Q2 Manufacturing engineer works to locate a center of gravity as a drilled hole location of a thin composite plate with a density is constant. Figure 1 shows the shape of a plate consists of a semicircle with a radius of 10 cm and a square.
 - (a) Compute an area of the plate using double integral.
 - (b) Construct a center of gravity using double integral.
 - (c) Determine M_y if the density of a plate is 0.5 gcm⁻³.

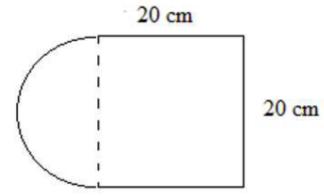


Figure 1: Composite plate

(7 marks)

Q1 (a) Given $f(x, y) = 5x^3 + 2xy - 3x^2 \cos(y) + 8$:

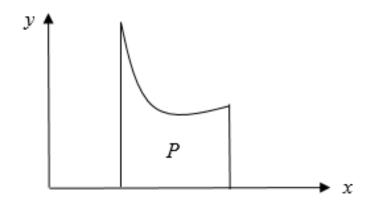
i. Classify whether $f_{xy} = f_{yx}$ or otherwise.

(5 marks)

ii. Calculate $f_{xy}(5,2\pi)$ and $f_{yx}(5,2\pi)$ using a result in (i).

(2 marks)

- (b) Consider one of the critical points for the function, $f(x, y) = 2xy + \frac{1}{x} + \frac{4}{y}$ is $(\frac{1}{2}, 2)$.
 - i. Differentiate f_x, f_y, f_{xx}, f_{yy} and f_{xy} .


(9 marks)

ii. Compute a value of $f_{xx}(\frac{1}{2},2)$, $f_{yy}(\frac{1}{2},2)$ and $f_{xy}(\frac{1}{2},2)$.

fiyoo MyUTeM

Luas rantau P yang ditunjukkan di dalam Rajah 3.1 telah dianggarkan menggunakan kaedah berangka dengan satu segmen, iaitu n=1. Tanpa apa-apa pengiraan, kaedah yang mana anda rasa akan memberikan anggaran luas yang lebih baik; petua trapezoid atau petua Simpson's 1/3? Berikan alasan anda.

Anggarkan $\int_0^8 f(x) dx$ menggunakan:

i. petua Simpson's 1/3, dengan selang langkah h = 1.

(7 markah)

ii. petua Simpson's 3/8, dengan selang langkah h = 1.

(7 markah)

iii. Kenalpasti kaedah yang paling baik bagi penyelesaian kamiran tersebut dengan membandingkan keputusan pada (b)(i) dan (b)(ii) dengan nilai sebenar.

[Nota: Diberi nilai sebenar ialah 20.9377]

(2 markah)

Jadual 3

х	0	1	2	3	4	5	6	7	8
f(x)	1.8	3.0	3.1	3.0	2.5	2.2	2.7	2.5	3.5

The transient response of this system is to be improved.

Formulate the best strategies that could be applied using classical PID control structure.

(10 marks)

(b) Proportional (P) plus Integral (I) plus Derivative (D) controller (PID) is a form of linear controller. Figure 2 shows a step response of a system.

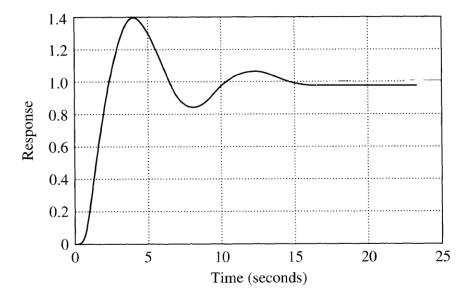


Figure 2: Step response of a PID based control system.

ii. Suggest a change to the system transfer function in term of additional pole or zero on the real axis that would ensure total system stability.

[Note: Re-sketch the revised Root Locus without details as in (i)]

(3 marks)

iv. Predict changes to the system transient response characteristics for the case of increasing the forward gain.

[Note: Considers the followings transient response characteristics; Percentage Overshoot, Settling Time, and Damping Ratio]

(3 marks)

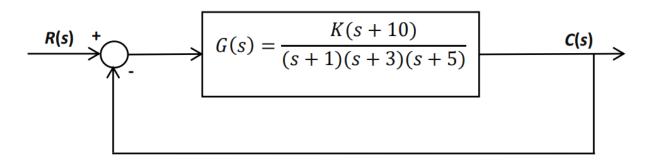


Figure 5: A unity feedback system

Since PLCs were first introduce in 1969, it has evolved tremendously and still considered as the best option a variety of industrial automation applications until this day.

Evaluate the future of PLCs technologies in term of it's features advancement which enable it to stay ahead.

(15 marks)

Makcik Kiyah Group Sdn. Bhd. currently producing bottled fruit juice for local markets and the demand is growing amidst COVID 19 pandemic. The company were unable to meet the increasing demand due to the bottleneck experienced at labelling station as it is manually executed.

Recommend an automated PLC base solution to the problem. Your solution should include;

- Detail sketch of propose automated bottle labelling station.
- PLC connection to the system.
- Descriptions on how your propose solution works.

Thank You

www.utem.edu.my