

IEA / WASHINGTON ACCORD (WA) / SYDNEY ACCORD (SA) / DUBLIN (DA) GRADUATE ATTRIBUTES

UTeM WORSKHOP 24-25 Apr 2019

Law Chung Lim

PhD, P. Eng., C.Eng., C.Sci., MIEM, FIChemE, FHEA ASSOCIATE DIRECTOR (CHEMICAL ENGINEERING) EAU

Chung-lim.law@nottingham.edu.my

Eng Tech Regitration (BEM)

 According to Section 7 (1B) of the Act, an Engineering Technologist will be entitled to describe himself or hold himself out under any name, style or title using the abbreviation "Eng.Tech." after his name or in any way associate with his name

Sydney Accord

 In Sydney Accord, qualifications accredited or recognised by other signatories are recognised by each signatory as being substantially equivalent to accredited or recognised qualifications for the practice of engineering technology at the appropriate level within the engineering team

Distinguishing Factors

WASHINGTON ACCORD ENGINEER

SYDNEY ACCORD ENGINEERING TECHNOLOGIST

DUBLIN ACCORD ENGINEERING TECHNICIAN

PROFESSIONAL ENGINEERING GRADUATES

are expected to work with

Complex Engineering Problems

TECHNOLOGIST GRADUATES

to work with

Broadly Defined Engineering Problems **TECHNICIAN GRADUATES**

to work with

Well-defined Engineering Problems

Depth of Knowledge Required

WASHINGTON ACCORD ENGINEER

SYDNEY ACCORD ENGINEERING TECHNOLOGIST

DUBLIN ACCORD ENGINEERING TECHNICIAN

Complex Engineering Problems (Engineer)

Requires in-depth knowledge that allows a fundamentals-based first principles analytical approach

Broadly Defined Problems (Technologist)

Requires knowledge of principles and applied procedures or methodologies

Well-defined Problems (Technician)

Can be solved using limited theoretical knowledge, but normally requires extensive practical knowledge

Range of Engineering Activities

WASHINGTON ACCORD ENGINEER

SYDNEY ACCORD ENGINEERING TECHNOLOGIST

DUBLIN ACCORD ENGINEERING TECHNICIAN

Complex
Engineering
Activities or
Projects

Broadly
Defined
Engineering
Activities or
Projects

Well-defined Engineering Activities or Projects

TERMINOLOGIES

CP=WP

Complex Problem Solving

EA

Complex Engineering Activities

PO=WA

Graduate Attributes

WK

• Knowledge Profile

CP-EA-WA-WK

KNOWLEDGE PROFILE

WA = Requires in-depth knowledge that allows a fundamentals-based first principles analytical approach SA = Requires knowledge of principles and applied procedures or methodologies

DA = Can be solved using limited theoretical knowledge, but normally requires extensive practical knowledge

- WK1- natural sciences
- WK2 mathematics
- WK3 engineering fundamentals
- WK4 specialist knowledge
- WK5 engineering design
- WK6 engineering practice
- WK7 comprehension
- WK8 research literature

SK1- natural sciences

SK2 – mathematics

SK3 – engineering fundamentals

SK4 – specialist knowledge

SK5 - engineering design

SK6 – engineering technologies

SK7 – comprehension

SK8 - technological literature

DK1- natural sciences

DK2 – mathematics

DK3 – engineering fundamentals

DK4 – specialist knowledge

DK5 – engineering design

DK6 – practical engineering knowledge

DK7 – comprehension

WA-WK SA-SK DA-DK

PROFESSIONAL
ENGINEERING
GRADUATES Complex
Engineering
Problems

TECHNOLOGIST GRADUATES Broadly Defined Engineering Problems

TECHNICIAN GRADUATES -Well-Defined Engineering Problems

GRADUATE ATTRIBUTES (Keywords)	WA-WK's	WP/EA	SA-SK's	BD/EA	DA-DK's	WD/EA
1. Engineering Knowledge	WK1-WK4	WP	SK1-SK4	BD	DK1-DK4	WD
2. Problem Analysis	WK1-WK4	WP	SK1-SK4	BD	DK1-DK4	WD
3. Design/Development of Solutions	WK5	WP	SK5	BD	DK5	WD
4. Investigation	WK8	WP	SK8	BD	-	WD
5. Modern Tool Usage	WK6	WP	SK6	BD	DK6	WD
6. The Engineer and Society	WK7	WP	SK7	BD	DK7	WD
7. Environment and Sustainability	WK7	WP	SK7	BD	DK7	WD
8. Ethics	WK7		SK7		DK7	
9. Individual and Team work						
10. Communication		EA		TA		NA
11. Project Management and Finance						
12. Life Long Learning						

Assessments provide adequate feedback to the programme to identify strengths and weaknesses for CQI

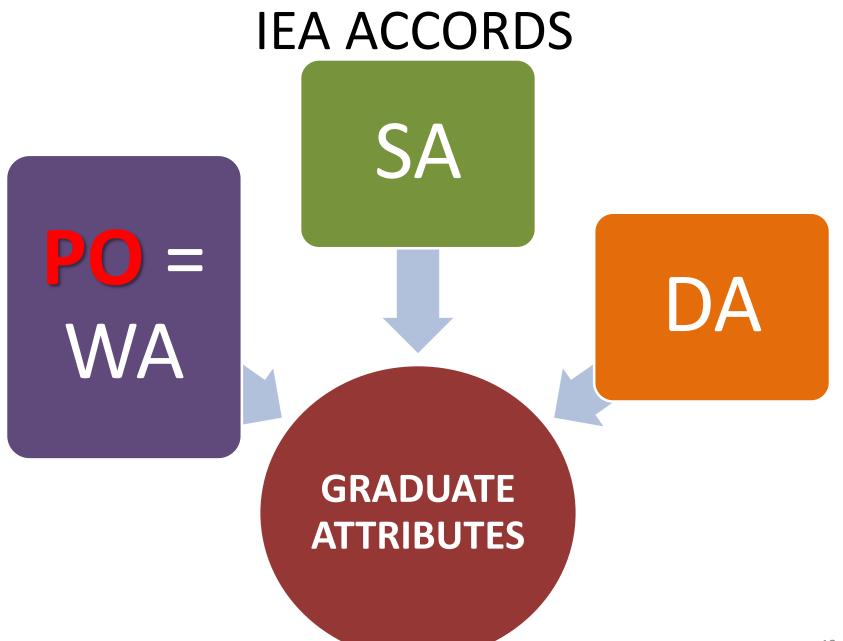
Knowledge Profile **SK1-SK8**

SK	Characteristics		
SK1	Natural sciences	A systematic, theory-based understanding of the natural sciences applicable to the discipline.	
SK2	Mathematics	Conceptually-based mathematics, numerical analysis, statistics and formal aspects of computer and information science to support analysis and modelling applicable to the discipline.	
SK3	Engineering fundamentals	A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.	
SK4	Specialist knowledge	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.	

Knowledge Profile WK1-WK8

SK	Characteristics		
SK5	Engineering design	Knowledge that supports engineering design in a practice area.	
SK6	Engineering practice	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.	
SK7	Comprehension	Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the professional responsibility of an engineer to public safety; the impacts of engineering activity: economic, social, cultural, environmental and sustainability.	
SK8	Research literature	Engagement with selected knowledge in the research literature of the discipline.	

Range of Engineering Activities



SYDNEY ACCORD DUBLINALD RD ENGINEERING TECHNOLOG ST TECHNOLOG ST

Complex
Engineering
Activities or
Projects (EA)

Definition Definition Engineering Activities or Projects (TA)

Well-defined Engineering Activities or Projects (NA)

Graduate Attributes SA1-SA17

Graduate Attributes SAL-SALZ			
SA	Characteristics	SK	
SA1	Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization as specified in SK1	SK1, SK2,	

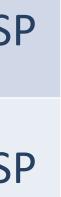
to SK4 respectively to defined and applied engineering procedures, processes, systems or methodologies Identify, formulate, research literature and analyse broadly-

SK3, SK4

defined engineering problems reaching substantiated conclusions using analytical tools appropriate to the discipline or area of

Conduct investigations of broadly-defined problems; locate, search

and select relevant data from codes, data bases and literature


(SK8), design and conduct experiments to provide valid

SK1,

SK2,

SK8

SK3, specialisation. (SK1 to SK4) SK4 Design solutions for broadly- defined engineering technology problems and contribute to the design of systems, components or processes to meet specified needs with appropriate consideration SK5 for public health and safety, cultural, societal, and environmental considerations. (SK5)

SP

SP

Graduate Attributes **SA1-SA12**

SA	Characteristics	SK	SP/ TA
SA5	Select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to <i>broadly-defined</i> engineering problems	SK6	SP
	Demonstrate understanding of the societal, health, safety,		

legal and cultural issues and the consequent responsibilities SA₆ relevant to engineering technology practice and solutions to broadly defined engineering problems. (SK7)

Understand and evaluate the sustainability and impact of

defined engineering problems in societal and environmental

engineering technology work in the solution of broadly

Understand and commit to professional ethics and

responsibilities and norms of engineering technology

SA7

contexts. (SK7)

practice. (SK7)

SK7

SK7

SK7

Graduate Attributes SA1-SA12

SA	Characteristics	WK	SP/ TA
SA9	Function effectively as an individual, and as a member or leader in diverse teams	-	-
	Communicate effectively on broadly-defined engineering		

activities with the engineering community and with society at **SA10** large, by being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instruct

Demonstrate knowledge and understanding of engineering management principles and apply these to one's own work, as a member or leader in a team and to manage projects in

SA11 multidisciplinary environments Recognize the need for, and have the ability to engage in independent and life-long learning in specialist technologies

Range of Problem Solving

Depth of knowledge required

• **SP1** engineering knowledge at the level of one or more of SK 4, SK5, and SK6 supported by SK3 with a strong emphasis on the application of developed technology

Range of conflicting requirements

• **SP2** Involve a variety of factors which may impose conflicting constraints

Depth of analysis required

 SP3 Can be solved by application of well-proven analysis techniques

Range of Problem Solving

SP1-SP7

Familiarity of issues

• **SP4** Belong to families of familiar problems which are solved in well-accepted ways

Extent of applicable codes

• SP5 May be partially outside those encompassed by standards or codes of practice

Extent of stakeholder involvement & conflicting requirements

 SP6 Involve several groups of stakeholders with differing and occasionally conflicting needs

Interdependence

SP7 Are parts of, or systems within complex engineering problems

Range of Activities Broadly-Defined Activities TA1-TA5

Range of resources

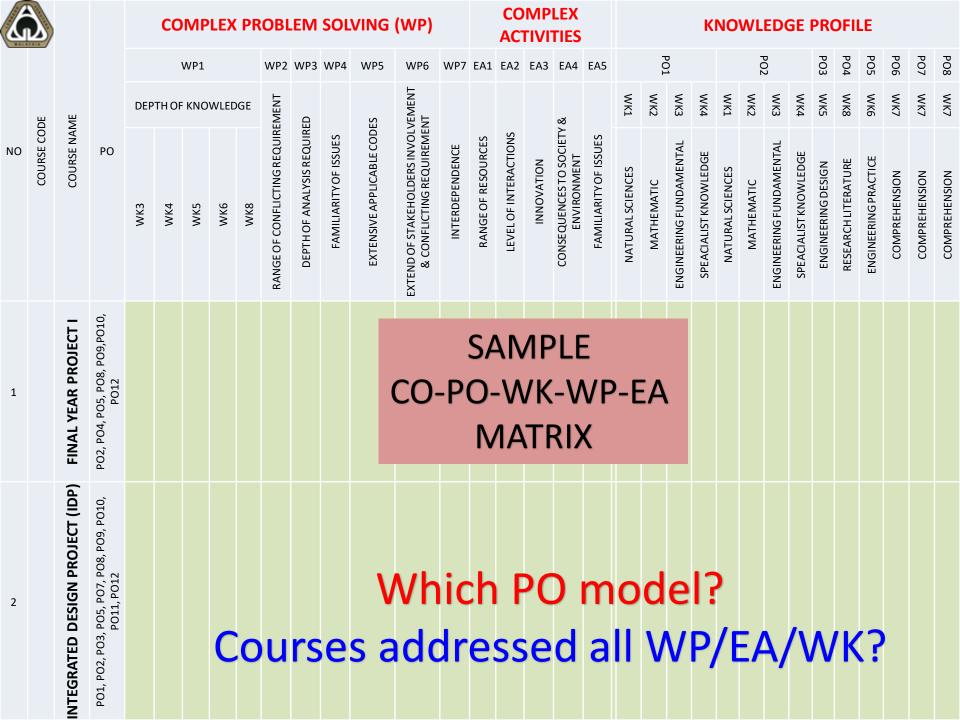
• TA1 Involve a variety of resources (and for this purposes resources includes people, money, equipment, materials, information and technologies)

Level of interactions

 TA2 Require resolution of occasional interactions between technical, engineering and other issues, of which few are conflicting

Innovation

 TA3 Involve the use of new materials, techniques or processes in non-standard ways


Range of Activities Broadly-Defined Activities TA1-TA5

Consequences to society and the environment

• TA4 Have reasonably predictable consequences that are most important locally, but may extend more widely

Familiarity of issues

 TA5 Require a knowledge of normal operating procedures and processes

PO ASSESSMENT MODELS

1

 Accumulated model – ALL courses contributing to the PO measurements

7

 Dominating model – SELECTED courses contributing to the PO measurements, normally accounted in several CORE courses.

2

 Culminating model – SELECTED FEW usually between 3-5 courses contributing to the PO measurements, normally conducted during the final year of study.

Elix New Panel 2018

Internal Audit/Moderation

Lecturer's Name Course Code and Name **WA** assigned

with **EA**

WA10 Level of communication according to type of activities performed

Projects/Performance/

Activities with **EA**

Attributes

FA1

EA2

EA3

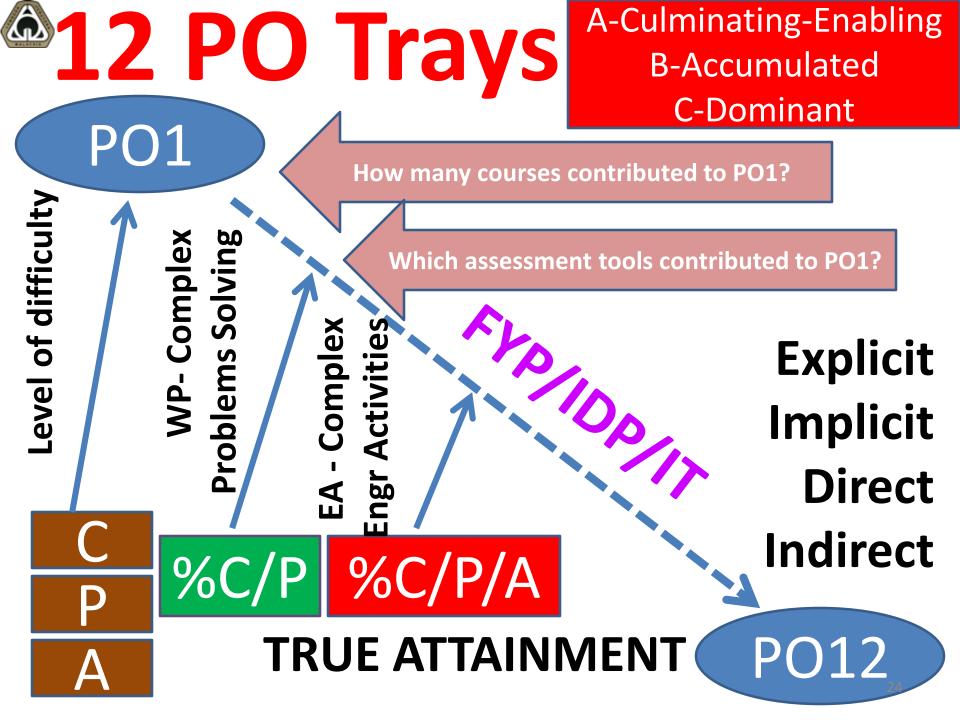
EA4

FA5

Yes / No & Comments:

Some or all of the following characteristics:

(m)


Range of resources Level of interaction

Yes / No & Comments:

Innovation Consequences to society and

environment

Familiarity of issues

Engineering Knowledge

Ethics

Individual and Team work

Problem Analysis

Environment and Sustainability

Communication

Design/
Development
of Solutions

The Engineer and Society

Project
Management
and Finance

Investigation

Modern Tool Usage

Lifelong learning

References

 IEA Graduate Attributes and Professional Competency Profiles, Version 3: 21 June 2013

Points for Clarifications

Chung-Lim.Law@Nottingham.edu.my