UTEM WORKHOP

IR. ASSOC. PROF. ABDUL AZIZ OMAR DIRECTOR ENGINEERING & ENGINEERING TECHNOLOGY ACCREDITATION DEPARTMENT, BEM

24-25 APR 2019

AREAS TO COVER

- 1. Source of power for BEM
- 2. Why IEA
- 3. About ETAC
- 4. Purpose of Accreditation
- 5. Focus of ETAC Accreditation
- 6. Mechanics of Accreditation

REGISTRATION OF ENGINEERS ACT (REV 2015)

Key changes related to Engineering Technology:

- Liberalisation of engineers' registration and practice
- Include technologists and technicians as part of the engineering service professionals
- Recognition of engineering technologists as professional engineers
- Recognition of engineering technicians as assistant to Professional Engineers' services

ONE FUNCTION OF THE BOARD

4(1)(ef)

to appoint a body consisting of members from the Board, Professional Engineers and other persons as may be determined by the Board to advise the Government and the public on matters relating to engineering education, including the certification of such programmes;

MQA ACT ALLOWS

3(1): The provision of this Act shall be in addition to, and not in derogation of, the provisions of any other written law relating to accreditation of programmes or qualifications."

51(1): A Joint Technical Committee consisting of representatives of the relevant professional body, an officer of the Agency and such other persons as may be deem necessary by the relevant professional body shall be established by the relevant professional body for the purpose of –

(a) considering an application for accreditation under subsection 50(1)...

IMPLEMENTATION

- Engineering Technologist 2017 (ENGINEERING TECHNOLOGY PROGRAMME ACCREDITATION MANUAL 2015)
- ➤ Technician 2018 (ENGINEERING TECHNICIAN EDUCATION PROGRAMME ACCREDITATION MANUAL 2016)
- MQA perpetual accreditation ends 6 years after initial year given

ENGINEERING & ENGINEERING TECHNOLOGY DOMAIN

Engineers

Research & Design

Work

Supervision & Maintenance

Technologists

Strong in
Mathematics,
Engineering
Sciences,
Professional
courses
(Theoretical)

Engineering
Breadth & Depth
of Curricula

Education

Appropriate
Mathematics,
Engineering
Sciences,
Professional
courses
(Practical)

Technology
Breadth & Depth
of Curricula

OUR CHALLENGE

We need to prepare our engineering technology and technician graduates:

- ✓ To be aware of their roles to take care of public safety in their line of work
- ✓ To be able to take up the global challenge
- ✓ To be mobile across nations

THE GLOBAL STANDARDS

http://www.ieagreements.org/

THE IEA'S VISION

Improve the global quality, productivity and mobility of engineers by being an accepted independent authority on best practice in standards, assessment and monitoring of engineering education and professional competence

THE IEA'S CORE ACTIVITIES

- Consistent improvement of standards and mobility
- Defining standards of education and professional competence
- Assessment of education accreditation and evaluation of competence
- Participation in activities that are driven from the engineering profession

DEVELOPMENT OF EAC-ETAC INTERNATIONAL ENGINEERING **ALLIANCE**

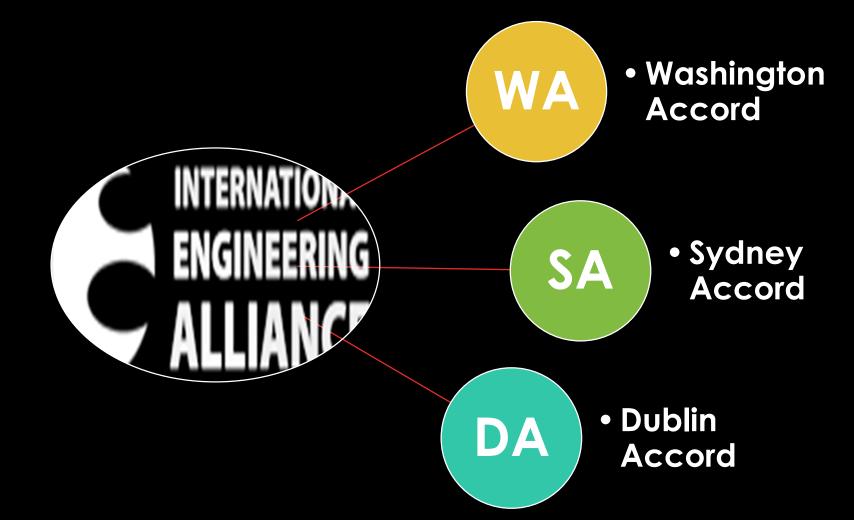
WA signed by 6 organisations

Development of formal peer review processes

New Accords and **Agreements**

Development of graduate attribute **exemplars**

28 Sep 1989


1990s onwards 1997-2002

2001 onwards

IEA Established in 2007

EDUCATIONAL ACCORDS

WA

- Signed in 1989, the Washington Accord, is a multi-lateral agreement between bodies responsible for accreditation or recognition of tertiary-level engineering qualifications within their jurisdictions who have chosen to work collectively to assist the mobility of professional engineers.
- The Washington Accord is specifically focused on academic programmes which deal with the practice of engineering at the professional level.

WA SIGNATORIES

- Australia Canada China Chinese
 Taipei Hong Kong China India Ireland Japan Korea Malaysia New Zealand Russia Singapore South Africa Sri Lanka Turkey United States United Kingdom Pakistan Peru
- Provisional Status Chile, Costa Rica, Mexico, Bangladesh, Philippines

SA

- The Sydney Accord is specifically focused on academic programmes dealing with engineering technology.
- The Accord acknowledges that accreditation of these academic programmes is a key foundation for the practice of engineering technology in each of the countries or territories covered by the Accord.
- It recognises the importance of the roles engineering technologists as part of a wider engineering team.

SA SIGNATORIES

- Australia Canada Chinese Taipei -Hong Kong China - Ireland - Korea - New Zealand - South Africa - United Kingdom -United States - Malaysia
- Provisional Status Peru

DA

- The Dublin Accord is specifically focused on the mutual recognition of academic programmes/qualifications that underpin the educational base for Engineering Technicians.
- The Accord acknowledges that the educational base is a key foundation for practice as an engineering technician, in each of the countries or territories covered by the Accord.
- It recognises the importance of the roles engineering technicians play as part of a wider engineering team.

DA SIGNATORIES

Australia - Canada - Ireland - New Zealand - Korea - South Africa - United Kingdom - United States - Malaysia

EDUCATION ACCORDS

PRACTICE AGREEMENTS

WASHINGTON ACCORD

4 YEARS

IPEA sional En

International Professional Engineers Agreement (ENGINEERS MOBILITY FORUM)

SYDNEY ACCORD

3 YEARS

APEC ENGINEER

IETA

International Engineering Technologist

Agreement
(ENGINEERING TECHNOLOGISTS MOBILITY FORUM)

DUBLIN ACCORD

2 YEARS

AIET

Agreement For International Engineering
Technicians
(ENGINEERING TECHNICIANS MOBILITY FORUM)

FEANI / EUR-ACE / ENAEE (EUROPE)

3 + 2 YEARS

NABEEA (ASIA)

UPADI (CENTRAL & SOUTH AMERICA) INTERNATIONAL ENGINEERING ALLIANCE (IEA)

(INTERNATIONAL ENGINEERING MEETING, IEM)

IPEA MEMBERS

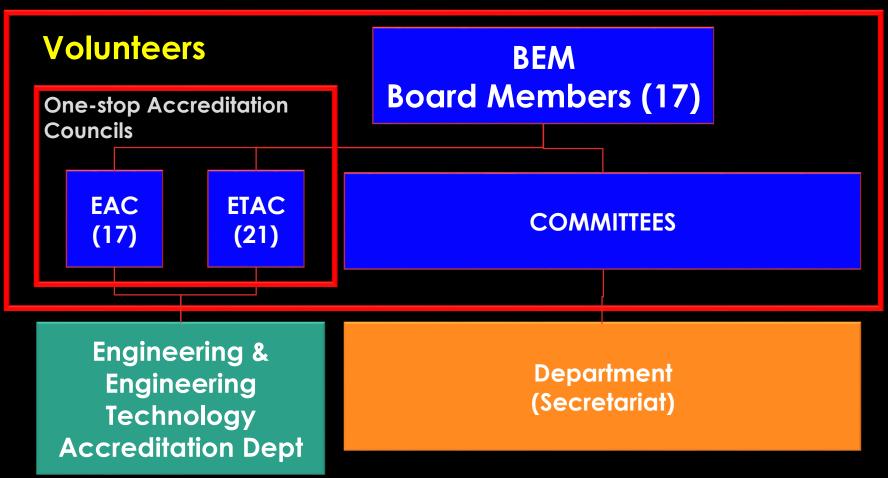
- Australia Canada Ireland New
 Zealand Hong Kong China South Africa United Kingdom United States Japan Malaysia Korea Singapore Sri Lanka India Chinese Taipei
- Provisional Status Bangladesh, Pakistan, RussiaPeru

APEC ENGINEER MEMBER ECONOMIES

Australia - Canada - Hong Kong China -Japan - Korea - Malaysia - New Zealand -United States - Indonesia - Philippines -Thailand - Chinese Taipei - Singapore -Russia -

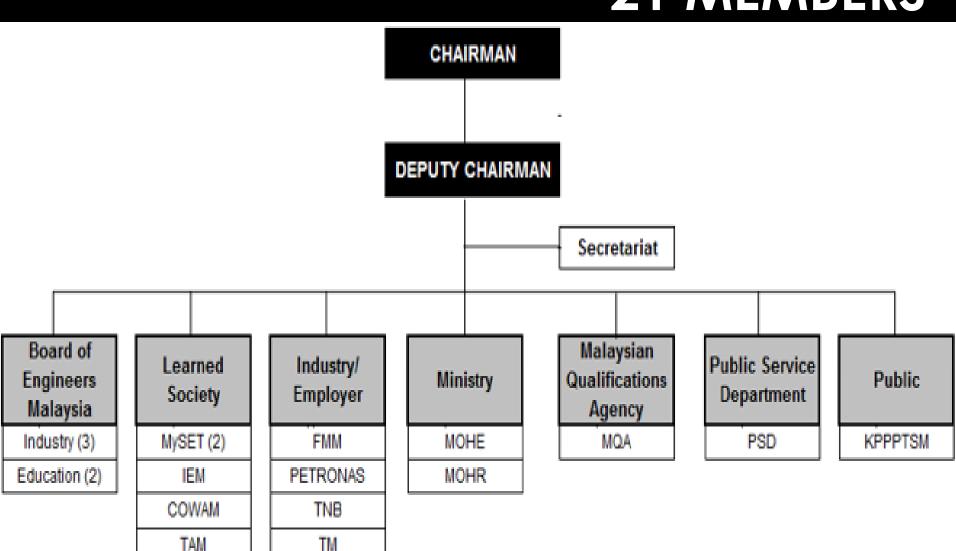
IETA MEMBER

Canada - Hong Kong China - Ireland -New Zealand - South Africa - United Kingdom



AIET MEMBER

 Australia – Canada - Ireland - New Zealand - South Africa - United Kingdom


BEM ORGANOGRAM

BEM is certified to ISO 9001:2015

ENGINEERING TECHNOLOGY ACCREDITATION COUNCIL – 21 MEMBERS

ETAC VISION & MISSION

Vision:

To be a leading accreditation body by providing outstanding and quality curriculum for engineering technology education.

Mission:

- To accredit engineering technology bachelor degree, engineering diploma and engineering technology diploma programmes
- To provide students with an excellent academic foundation and technical education through structured education programmes
- To provide recognition for all engineering technologist and engineering technician from skilled based education programmes both locally and internationally

THE ETAC STRATEGIC PLAN

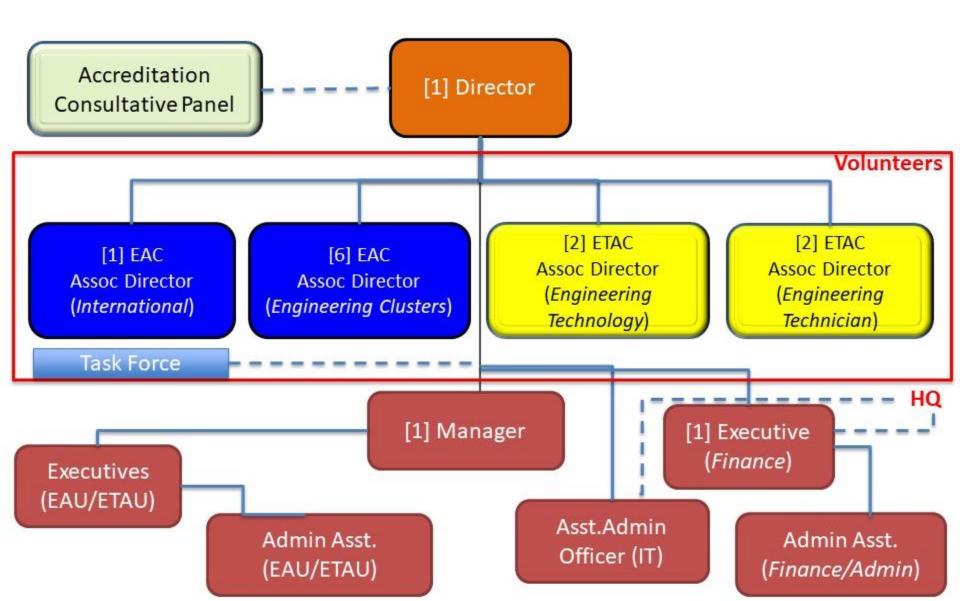
Eminence

Driving towards achieving recognition in engineering technology education

Technology

Aim for the highest levels of excellence in engineering technology education

Accelerate


Recognising efforts that accelerate the engineering technology education programme

Core Values

Uplift and fostering high standards of professionalism, standard and integrity

EETAD

THE EETAD RESPONSIBILITIES

EAC-ETAC

- Manage the process of applications for approval and accreditation of engineering and engineering technology (E&ET) programmes
- Liaison with stakeholders (IHL, MOHE, MQA, JPA, IEM etc.)
- Collaborate with universities, corporations, private institutions and government agencies on the development of E&ET education in Malaysia.
- Promote the Malaysian accreditation system whilst retaining collaboration with international professional bodies especially the signatories of Washington, Sydney and Dublin Accords.
- Establish and maintain a list of local and foreign accredited E&ET programmes.
- Support mutual recognition initiatives in E&ET education.
- Respond to any inquiries and complaints concerning accreditation.
- Facilitate the EAC and ETAC meetings and other related meetings on accreditation and recognition where necessary.

ACCREDITATION OBJECTIVE

- 1. To ensure that graduates of the accredited engineering education programmes satisfy the minimum academic and practical requirements for registration as ET/Tech(IoW) with BEM.
- 2. To satisfy MQA's requirements under the Malaysian Qualification Framework
- 3. To ensure that Continual Quality Improvement (CQI) is being practiced by IHLs, and may also serve as a tool for benchmarking.
- 4. Allow international mobility of graduates.

IMPORTANCE TO THE PROFESSION

- Ensures that graduates have met the educational requirements to enter the profession
- Enhances the mobility of graduate professionals
- Provides professional development for faculty and industry practitioners
- Provides opportunity for the profession to guide the educational process to reflect current and future needs

THE FOCUS

- Outcome-based Education (OBE)
 Programme
- Engineering education content and level (breath & depth) are maintained
- Programme Continual Quality Improvement (CQI)
- Systematic (QMS)

THE APPROACH

- To concentrate more on assessments of outcomes:
 - The IHL Self-Assessment Report (SAR) must focus more on whether have they achieved the 12 Programme Outcomes and how do they assess them.
 - The Evaluation Panel (EP) will concentrate on reviewing the evidences for outcome achievements through more extensive documents reviews, longer interviews with staff, students and stakeholders.

ETAC ACCREDITATION STANDARDS

ENGINEERING TECHNICIAN EDUCATION PROGRAMME ACCREDITATION MANUAL

2016

ENGINEERING TECHNICIAN EDUCATION PROGRAMME ACCREDITATION MANUAL

Engineering Technology Accreditation Council (ETAC)

ENGINEERING TECHNOLOGY PROGRAMME ACCREDITATION MANUAL 2015

ENGINEERING TECHNOLOGY
PROGRAMME
ACCREDITATION MANUAL
2015

Engineering Technology Accreditation Council, BEM |

OBE - DEFINITION

"Outcome-based education means starting with a clear picture of what is important for students to be able to do, then organising the *curriculum*, *instruction* and *assessment* to make sure that this learning ultimately happens"

(Spady, 1994)

CONSTRUCTIVE ALIGNMENT

OBE FOCUSES ON STUDENT LEARNING

- Using learning outcome statements to make explicit what the student is expected to be able to know, understand or do;
- Providing learning activities which will help the student to reach these outcomes;
- Assessing the extent to which the student meets these outcomes through the use of assessment criteria.

THE OBE APPROACH IN CURRICULUM DESIGN

Vision & Mission of the Institution/Faculty

PEOs or Early Career Goals

Programme Outcomes or Competencies

Course Objectives or Course Outcomes

OBE Outcome Based Education

Directed & Coherent Curriculum

Graduate Relevant to Industry

Programme Objective (after 3-5 Years)

Programme Outcome (at Exit)

Course/Unit/Learning Outcome (Abilities & Intentional)

Knowledge

Skill Attitude

Measurable

Performance Indicator

Assessment

Evaluation

Student Centered

Appropriate Delivery (Case, PBL ...)

Continual Quality
Improvement
(CQI)

CHARACTERISTICS OF OBE CURRICULA

- Have programme objectives (PEO), programme outcomes (PO), course outcomes (CO/CLO) and performance indicators/criteria or Rubrics.
- Stated objectives and outcomes can, and should be assessed.
 - Course outcomes must satisfy the stated programme outcomes. Constructive alignment must be seen.
 - Learning outcomes are intentional and assessed using suitable performance indicators and assessment tools.

CHARACTERISTICS OF OBE CURRICULA

- Centered around the needs of the students and the stakeholders (i.e. market requirements)
- Programme outcomes address Knowledge (Cognitive), Skills (Psychomotor) and Attitudes (Affective) to be attained by students.
 - Teaching/Learning method may have to be integrated to include different delivery methods to complement the traditional lecturing method.
- CQI must be visible.

GENERAL CLASSIFICATION

- Strength "Wow" factor
- Weakness Deficiency or noncompliance
- Concern
- Opportunity for Improvement

STRENGTH

Strengths can be defined as anything with a 'wow factor' of 'very outstanding nature' far beyond just satisfying the minimum requirements.

WHAT MAY CONSTITUTE STRENGTH?

- Exceeds the minimum standard set by Manuals.
- Involved stakeholders, both internal and external, extensively
- Programme challenges students to achieve greater heights than just satisfying the minimum standard
 - Blend of delivery methods
 - Attain competency in the open-ended project based and problem oriented courses
- Majority of the staff has Industrial experience/ qualification and the number available indicates a low staff-student ratio (that enables greater contact with students)

WEAKNESS

Transgression of any Accreditation Criteria to the point of TOTAL COLLAPSE.

WHAT MAY CONSTITUTE WEAKNESS?

- ANY of the eight (8) Qualifying Requirements NOT fulfilled.
- Below the 'minimum' expectation of criteria.
- Programme has no breadth and depth of an engineering education.
- > OBE is not implemented.
- Repeated Major Concerns may lead to Weaknesses.

CONCERN

Any shortfall, shortcoming or transgression, but not amounting to 'total collapse', of any of the accreditation criteria.

WHAT MAY CONSTITUTE CONCERN?

- Usually a "concern" is that the programme has not failed the criteria set under the ETAC Manuals, but if left unchecked may lead to failure at a later date.
- Where there are lapses in observing the criteria of the EAC Manual, it would appropriately be classified under "concern".

CONCERN CATEGORY

1. MAJOR

- Serious lapses or non-compliances of the Manual.
- Usually relates to Criteria 2, 3 & 7

2. MINOR

- Underachievement of the Manual requirements
- Mostly relates to Criteria 1, 4, 5 & 6

OPPORTUNITY FOR IMPROVEMENT

- > The "Good to have" items.
- Items an institution could consider despite already having the necessary strength or having already satisfied the minimum requirements of the ETAC Manual.
- Institutions would **not be penalised** for not taking the necessary action to address the issue.

ACCREDITATION DECISION

- Accredited
 - > 6 years/6 years with interim/3 years
- Decline accreditation. In such a case, a further application will normally not be considered within the next one year.
- Defer accreditation. IHL will need to comply in a given time frame before another visit is done
- The accreditation shall be accorded to a specific programme, location and mode.

SIX YEARS (6) ACCREDITATION

- Programme that has satisfied the minimum requirement of the ETAC Manuals.
- There is **no shortcoming** found except for the continual quality improvement issues.
- Implementation of OBE approach is effective where academic staffs are aware and fully implementing it at the course level, together with CQI.
- Overall evaluation and CQI of the programme are visible.

SIX YEARS (6) ACCREDITATION AND INTERIM REPORT TO BE SUBMITTED BY 3RD YEAR

- Programme that has satisfied the minimum requirement of the Manual except for a few "CONCERN" found.
- These concerns are **isolated and minor** in nature.
- Implementation of OBE approach is significant (widespread) with varied awareness among academic staffs and varied implementation at the course level, including CQI.
- Overall evaluation and CQI of the programme and courses are visible.

THREE YEARS (3) ACCREDITATION

- Programme that has satisfied the minimum requirement of the Manual except for the list of "CONCERN" found.
- These concerns are mostly related and some are major in nature.
- Implementation of OBE approach is already in place with varied awareness among academic staffs and varied implementation at the course level.
- Overall CQI at programme and courses are not visible.

DECLINE ACCREDITATION OR ZERO (0) YEAR

- Anytime "WEAKNESS" is invoked, it refers to non compliance with the minimum standard specified by the Manual, and as such accreditation cannot be accorded
- Programme not meeting the qualifying requirements
- Curriculum does not provide the breadth and depth of engineering
- OBE approach is not implemented at all.

DECLINE ACCREDITATION OR ZERO (0) YEAR

- Evaluators must be fully convinced that the programme/institution is not in control of the situation and the outcomes are not evident, before recommending decline accreditation.
- There is a need to pursue on the problem issue with further investigation and obtain further evidence before making the decision.

DEFERRED ACCREDITATION

- > To allow the institution to do the necessary corrective action due to non-compliance.
- The institution may also withdraw the application for accreditation as a face saving option when accreditation decision is deferred. The record of evaluation would then be expunged.
- The institution may reapply for accreditation when deemed ready.
- Further evaluation would be required to ascertain compliance.

ACCREDITATION DECISION RUBRICS NEW PROGRAMME + NEW CYCLE

	6 years	6 years + interim report within 3 years		3 years			Deferred or Declined
Major concerns	X	X	1	X	1	2 – 3 Major	≥ 4 major concerns or any weakness.
Minor	X	≤ 3	1-2	≥ 4	≥ 3		

As a guide for Panel to recommend – final decision is still with Council

ACCREDITATION DECISION RUBRICS CONTINUING ACCREDITATION

Balance of years

Balance of years -1

Balance of years -2

ALL concerns **CLOSED**

≤ 2 concerns not **CLOSED**

> 2 concerns not CLOSED

As a guide for Panel to recommend – final decision is still with Council

UNDERSTANDING THE MANUALS

EAC-E

NGINEERING TECHNICIAN EDUCATION PROGRAMME ACCREDITATION MANUAL

2016

ENGINEERING TECHNICIAN EDUCATION PROGRAMME ACCREDITATION MANUAL

Engineering Technology Accreditation Council (ETAC)

ENGINEERING TECHNOLOGY PROGRAMME ACCREDITATION MANUAL

ı

PROGRAMME
ACCREDITATION MANUAL
2015

Engineering Technology Accreditation Council, BEM |

GUIDING PRINCIPLES (SECTION 8)

- 1. Qualifying Requirements
- 2. Accreditation Criteria

QUALIFYING REQUIREMENTS

- ET

- 1. Minimum 140 SLT credit units of which about 40-50% time should be allocated for practice-oriented components.
- 2. Final year project (8-12 SLT credit units)
- 3. Industrial training (minimum of 24 weeks)
- 4. Full-time Teaching staff (minimum of 8)
- 5. Staff: student ratio 1: 15 or better
- 6. External examiner's report (minimum of two reports over five years)
- 7. Programme Educational Objectives
- 8. Programme Outcomes

QUALIFYING REQUIREMENTS - DIPLOMA

- 1. Minimum 90 SLT credit units. A minimum of 60 SLT credit units shall be engineering or engineering technology courses, of which at least 50% should be allocated for practice-oriented components in the technical and specialists areas.
- 2. Final year project (4-6 SLT credit units)
- 3. Industrial training (minimum of 16 weeks)
- 4. Full-time Teaching staff (minimum of 8)
- 5. Staff: student ratio 1: 20 or better
- 6. External examiner report (and availability of the process that requires a minimum of one report over two years)
- 7. Programme Educational Objectives
- 8. Programme Outcomes

ACCREDITATION CRITERIA

- Criterion 1 Programme Educational Objectives (PEOs)
- Criterion 2- Programme Outcomes (POs)
- Criterion 3- Academic Curriculum
- Criterion 4- Students
- Criterion 5- Academic and Support Staff
- Criterion 6- Facilities
- Criterion 7- Quality Management Systems

Engineering Technology

- Knowledge: apply knowledge of mathematics, science, engineering fundamentals and an engineering specialisation to defined and applied engineering procedures, processes, systems or methodologies;
- 2. Problem analysis: Identify, formulate, research literature and analyse broadly-defined engineering problems reaching substantiated conclusions using analytical tools appropriate to their discipline or area of specialisation.;

- 1. **Knowledge**: Apply knowledge of applied mathematics, applied science, engineering fundamentals and an engineering specialisation as specified in DK1 to DK4 respectively to wide practical procedures and practices;
- 2. Problem analysis: Identify and analyse well-defined engineering problems reaching substantiated conclusions using codified methods of analysis specific to their field of activity (DK1 to DK4);

EAC-ETAC

Engineering Technology

- 3. Design/ development of solutions: Design solutions for broadly-defined engineering technology problems and contribute to the design of systems, components or processes to meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.;
- 4. Investigation: Conduct investigations of broadly-defined problems; locate, search and select relevant data from codes, data bases and literature, design and conduct experiments to provide valid conclusions.

- 3. Design/development of solutions:

 Design solutions for well-defined technical problems and assist with the design of systems, components or processes to meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations (DK5);
- 4. Investigation: Conduct investigations of well-defined problems; locate and search relevant codes and catalogues, conduct standard tests and measurements;

EAC-ETAC

Engineering Technology

- 5. Modern Tool Usage: Select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to broadly-defined engineering activities, with an understanding of the limitations.;
- 6. The Engineer and Society: Demonstrate understanding of the societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to engineering technology practice.
- 7. Environment and Sustainability:
 Understand the impact of engineering technology solutions in societal and environmental context and demonstrate knowledge of and need for sustainable development.;

- 5. Modern Tool Usage: Apply appropriate techniques, resources, and modern engineering and IT tools to well-defined engineering problems, with an awareness of the limitations (DK6);
- 6. The Engineer and Society: Demonstrate knowledge of the societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to engineering technician practice and solutions to well-defined engineering problems (DK7);
- 7. Environment and Sustainability: Understand and evaluate the sustainability and impact of engineering technician work in the solution of well-defined engineering problems in societal and environmental contexts (DK7);

EAC-ETAC

Engineering Technology

- **8. Ethics:** Understand and commit to professional ethics and responsibilities and norms of engineering technology practice.
- 9. Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse technical teams.
- 10. Communications: Communicate effectively on broadly-defined engineering activities with the engineering community and with society at large, by being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

- 8. Ethics: Understand and commit to professional ethics and responsibilities and norms of technician practice;
- 9. Individual and Team Work:
 Function effectively as an individual, and as a member in diverse technical teams;
- 10. Communications: Communicate effectively on well-defined engineering activities with the engineering community and with society at large, by being able to comprehend the work of others, document their own work, and give and receive clear instructions;

EAC-ETAC

Engineering Technology

11. Project Management and Finance: Demonstrate knowledge and understanding of engineering management principles and apply these to one's own work, as a member and leader in a team and to manage projects in multidisciplinary environments;

12. Life Long Learning:

Recognize the need for, and have the ability to engage in independent and life-long learning in specialist technologies.

Engineering Technician

11. Project Management and Finance: Demonstrate knowledge and understanding of engineering management principles and apply these to one's own work, as a member or leader in a technical team and to manage projects in multidisciplinary environments;

12. Life Long Learning:

Recognise the need for, and have the ability to engage in independent updating in the context of specialised technical knowledge;

DEPTH OF KNOWLEDGE REQUIRED

(WA) Complex Problems (SA)
Broadly Defined
Problems

(DA)
Well defined
Problems

In-depth
knowledge that
allows a
fundamentalsbased first
principles
analytical
approach

Knowledge of principles and applied procedures or methodologies

Solved using limited theoretical knowledge, but normally requires extensive practical knowledge

PO EXPECTATION

PO **Statements** **GA** included PEO taken into account

PO

Stakeholders' involvement

& Results

- **Extent**
- **Evidence**

Processes

- **Basis for** curriculum design
- **Adequately** assessed

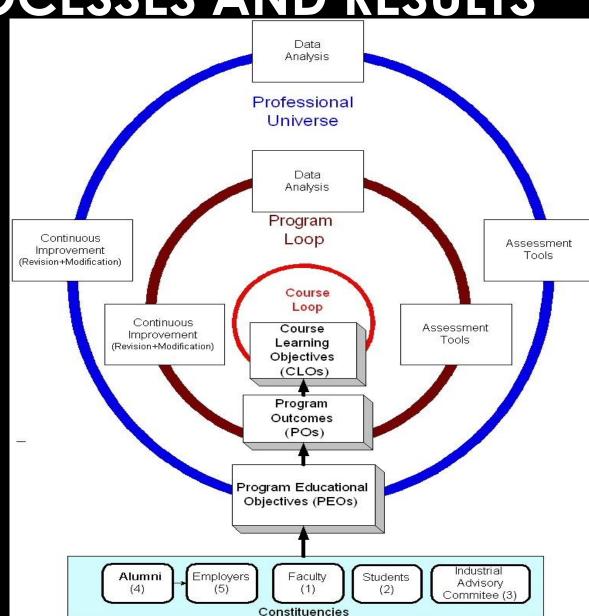
- Assessment model adopted
 - 1. Where is each PO assessed?
 - 2. How is each PO assessed?
 - 3. What is the satisfactory attainment?

Where is each PO assessed?

- There should be mapping to the curriculum
 - Beyond CO other learning outcomes in study period
- Framework of assessment what, when, why and how – The Rubrics

How is each PO assessed?

- Explain the assessment mechanisms could be quantitative and/or qualitative
 - Formative, summative / enabling, culminating
 - Cohorts, year
 - > Extra curricular



What is the satisfactory attainment?

- Explain your meaning of attainment and the standard set by the institution
 - What you consider as attained?
 - Examples of attainment by cohorts, students

- The CQI process instituted
 - ➤ Onion model for CQI loop
 - Describe the process and significance of CQI in the programme planning

